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Abstract
This manuscript seeks to bridge two seemingly disjoint paradigms of nonparametric

regression: estimation based on smoothness assumptions and shape constraints. The
proposed approach is motivated by a conceptually simple observation: Every Lips-
chitz function is a sum of monotonic and linear functions. This principle is further
generalized to the higher-order monotonicity and multivariate covariates. A family
of estimators is proposed based on a sample-splitting procedure, which inherits de-
sirable methodological, theoretical, and computational properties of shape-restricted
estimators. The theoretical analysis provides convergence guarantees of the estimator
under heteroscedastic and heavy-tailed errors, as well as adaptivity properties to the
unknown complexity of the true regression function. The generality of the proposed
decomposition framework is demonstrated through new approximation results, and ex-
tensive numerical studies validate the theoretical properties of the proposed estimation
framework.

Keywords— Nonparametric regression, Model selection, Shape-restricted estimation, Constructive
Approximation, Heavy-tailed data
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Choice 1 Assume that  is smooth (e.g., once-differentiable). 

Assume that  has some shape (e.g., monotonic).

f0
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Q. Are there connections between the spaces of 
monotonic and once-differentiable functions? 

Without additional structure, the minimax rates are  for both choices.∥ ̂f − f0∥2 = OP(n−2/3)
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1. worst case 2. low complexity

0.0 0.5 1.0 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.4

0.5

1. Many shape-restricted estimators (e.g., LSEs) are tuning parameter free. 

2. They converge at adaptive rates;

Properties of Monotone Estimator

∥ ̂f − f0∥2 = OP(m/n)∥ ̂f − f0∥2 = OP(n−2/3)
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Q. Can we identify structural links between smooth and 
monotone functions?

Q. Can we construct “tuning parameter free” and adaptive 
estimators beyond shape-restricted problems?

Q. Can we develop an optimal estimator for both smooth and 
shape-restricted classes simultaneously?  



For any -Lipschitz function , there exists a non-decreasing function  such that: 
 where . 

L f g
f(x) = g(x) − L′￼x L′￼ ≥ L

6

Proposition 3.1 



For any -Lipschitz function , there exists a non-decreasing function  such that: 
 where . 

L f g
f(x) = g(x) − L′￼x L′￼ ≥ L

6

+ =

Lipschitz function Linear function Monotonic function

Proposition 3.1 



For any -Lipschitz function , there exists a non-decreasing function  such that: 
 where . 

L f g
f(x) = g(x) − L′￼x L′￼ ≥ L

7

Proposition 3.1 

Adding a linear term to a monotone estimator 
significantly increases its expressiveness. 

We introduce a new decomposition class: 
 .ℱ1(L) := {f : [0,1] ↦ ℝ : f(x) = g(x) − Lx, ∃g is non-decr}

The class  is equivalent to the space of monotone functions. As , the space 
 becomes larger and eventually includes all -Lipschitz functions (and more). 

ℱ1(0) k ↑ L
ℱ1(k) L



For any -Lipschitz function , there exists a non-decreasing function  such that: 
 where . 

L f g
f(x) = g(x) − L′￼x L′￼ ≥ L

8

Lipschitz est. Monotone est. Model selection+⇒

A Lipschitz estimator can take the form:   .̂f(x) = ̂g (x) − ̂Lx
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For any -Lipschitz function , there exists a non-decreasing function  such that: 
 where . 

L f g
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Lipschitz est. Monotone est. Model selection+⇒

A Lipschitz estimator can take the form:   .̂f(x) = ̂g (x) − ̂Lx

Use sample-splitting to avoid overfitting. 
This leads to two stages of least-squares.  

Proposition 3.1 



1. Split data into two parts  and . Prepare a set  for candidate  (e.g., ).D1 D2 ℒ L ℒ = [−log n, log n]

Estimation Procedure

In practice, you do not need to specify . 

The optimization program (e.g.,  in R) will handle this.

ℒ
optim( ⋅ )

9 https://github.com/Kenta426/npparam



1. Split data into two parts  and . Prepare a set  for candidate  (e.g., ).D1 D2 ℒ L ℒ = [−log n, log n]

2. For each , compute isotonic regression (monotone LSE) on :  

 and return .

L ∈ ℒ D1

̂g L := arg min
g:monotone ∑

(x,y)∈D1

((y + Lx) − g(x))2 ̂fL(x) := ̂g L(x) − Lx

Estimation Procedure

9

Step 2 can be computed using near linear time algorithm (e.g.,  in R).isoreg( ⋅ )

https://github.com/Kenta426/npparam



1. Split data into two parts  and . Prepare a set  for candidate  (e.g., ).D1 D2 ℒ L ℒ = [−log n, log n]

2. For each , compute isotonic regression (monotone LSE) on :  

 and return .

L ∈ ℒ D1

̂g L := arg min
g:monotone ∑

(x,y)∈D1

((y + Lx) − g(x))2 ̂fL(x) := ̂g L(x) − Lx

3. Perform model selection over  on , for instance,  

 and return  .

ℒ D2

̂L := arg min
L∈ℒ ∑

(x,y)∈D2

(y − ̂fL(x))2 ̂f(x) := ̂g ̂L(x) − ̂Lx

Estimation Procedure

9

One can use other “robust” cross-validation using the median-of-means or aggregation.
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Convergence Rates of the Estimator

Lipschitz est. Monotone est. Model Selection+⇒
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For each fixed , fitting  using monotone regression  is 
(almost) identical to the standard estimation for shape-restricted problems.  

Selecting the “best”  from a set  is essentially a model 
selection performed over a nonparametric function space.

L ∈ ℒ y + Lx ∼ x ̂g L

L ∈ ℒ {L ↦ ̂g L(x) − Lx}

  +  ∥ ̂f − f0∥2 = OP( inf
L∈ℒ

Rmono
n,L RCV

n,ℒ)



Worst case Low complexity 

A1

A2

Theorem 4.1-4.3 

Convergence Rates of the Estimator
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Recall   
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q |Xi] ≤ C
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β = 2

Rmono
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It is not 
minimax when  

q < 3

Recall   

 has finite  moments conditioning on  i.e., . 

 is -sub-Weibull conditioning on  (  corresponds to sub-
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Convergence Rates of the Estimator

Under finite q moments, cross-validation becomes slower than estimation. 
This is because cross-validation based on squared error is suboptimal for 
heavy-tailed problems. We show that model selection based on median-of-
means achieves the optimal rate under both A1 and A2.

Lipschitz est. Monotone est. Model selection+⇒

13

Worst case Low complexity 

A1 O(m/n)O(n−2/3) O(n−1+1/q) O(n−1+1/q)+ +
It is not 

minimax when  
q < 3



Observe  from a density function  such that  

 where  is monotone.  

This problem can be considered as log Lipschitz 
estimation in compaction to log concave estimation.  
The example of the worst case is Laplace distribution 
and the adaptive case is exponential distribution. 

X1, …, Xn f0
log f0(x) = g(x) − Lx g

Open Problem: Irregular Density Estimation

14



Suppose that the estimator is obtained by the proposed method: 
. 

Intuitively,   should indicate that  is monotone while 
 can be the evidence against monotonicity.  

(Caveat) The population  is not identifiable.

̂f(x) = ̂g (x) − ̂Lx

| ̂L | ≈ 0 g0
| ̂L | ≫ 0

L0

15

Open Problem: Shape Detection



A nonparametric regression can be decomposed into two problems: (1) shape-restricted 
estimation and (2) cross-validation.  

We propose a new nonparametric estimator that converges at adaptive rates under the 
some assumption on the error  (e.g., sub-Weibull). 

When the error  has finite  moments, cross-validation can be “harder” than estimation. 
This cannot be improved without considering an alternative model selection procedure. 

In the manuscript, we discuss some “higher-order” (e.g., convex + quadratic) and 
multivariate extensions. 

εi

εi q

Summary

16



Higher-order Methods

Lipschitz fn. Monotone fn. Linear fn.+⇒
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Higher-order Methods

Lipschitz fn. Monotone fn. Linear fn.+⇒

Lipschitz deriv. Convex fn. Quadratic fn.+⇒

17
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regression: estimation based on smoothness assumptions and shape constraints. The
proposed approach is motivated by a conceptually simple observation: Every Lips-
chitz function is a sum of monotonic and linear functions. This principle is further
generalized to the higher-order monotonicity and multivariate covariates. A family
of estimators is proposed based on a sample-splitting procedure, which inherits de-
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estimators. The theoretical analysis provides convergence guarantees of the estimator
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The issue is the term , and this is not generally improvable for LSEs 
(Han and Wellner (2018); Kuchibhotla and Patra (2022)).

n−1+1/q

Let  be an LSE over an arbitrary uniformly bounded and finite class , 
and  has finite conditional  moments, then for any  

 

̂f ℱ
εi q δ > 0

𝔼∥ ̂f − f0∥2 ≤ (1 + δ) inf
f∈ℱ

∥f − f0∥2 + (n−1+1/q +
1
δn ) log( |ℱ | )

Theorem 4.4 

Oracle Inequality for Model Selection

20

We develop a new general oracle inequality regarding an LSE:
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Recall   and 
let  be a finite set of linear parameter 

ℱ1(L) := {f : [0,1] ↦ ℝ : g(x) − Lx, ∃g is non-decr}
ℒ L

The following “two-layer“ oracle inequality holds for any 

 

ε ∈ (0,1)
∥ ̂f − f0∥2 ≤ inf

L∈ℒ {C inf
f∈ℱ1(L)

∥f − f0∥2 + (Rmono
n,L + log( |ℒ | )RCV

n,L )}

Theorem 4.1-4.3 (informal) 



For any -Lipschitz function , there exists a non-decreasing function  such that: 
 where . 

L f g
f(x) = g(x) − L′￼x L′￼ ≥ L

24

Define -Lipschitz class as:   

. 

We introduce a new decomposition class: 

 .

L

Σ1(L) := {f : [0,1] ↦ ℝ :
| f(x1) − f(x2) |

|x1 − x2 |
≤ L, ∀x1, x2 ∈ [0,1]}

ℱ1(L) := {f : [0,1] ↦ ℝ : f(x) = g(x) − Lx, ∃g is non-decr}

We can show that  and  is not dense in  for fixed . Σ1(L) ⊊ ℱ1(L) Σ1(L) ℱ1(L) L

Proposition 3.1 



For an integer  and  satisfying , we define a forward operator: 

  . 

Let  be the collection of k-monotone functions (Chatterjee et al., 2015): 
 

Examples:  and  

We introduce a new function space:  
. 

r ≥ 1 h h ∈ [0,1 − rh]

Δr
h( f, x) :=

r

∑
m=0

( r
m)(−1)r−m f(x + mh)

𝒞(k)
𝒞(k) := {g : [0,1] → ℝ : Δk

h(g, x) ≥ 0 for all x ∈ [0,1]}
𝒞(1) := {non-decr. fns.} 𝒞(2) := {convex fns.}

ℱ(k, L) := {g(x) − (L/k!)xk such that g ∈ 𝒞(k)}

New Function Spaces

25



Properties of the Estimator

(Intuition) When monotone estimation is harder than cross-
validation, the convergence rate of the proposed estimator 
should match that of a monotone estimator.

Lipschitz est. Monotone est. Cross Validation+⇒
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Define th bounded -Lipschitz class for an integer  as:   k L k

Σk(L) := f : [0,1] ↦ ℝ : ∑
0≤m≤k−1

∥Dmf∥∞ +
|Dk−1f(x1) − Dk−1f(x2) |

|x1 − x2 |
≤ L, ∀x1, x2 ∈ [0,1]

We introduce a new function space:  
. ℱ(k, L) := {g(x) − (L/k!)xk such that g ∈ 𝒞(k)}

*   denotes the th weak derivative and  Dkf k D0f = f

We can show that  and  is not dense in  Σk(L) ⊊ ℱ(k, L) Σk(L) ℱ(k, L)


