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Fig: Anatomy of the gallbladder. Adapted from National Cancer Institute 
(https://www.cancer.gov/)

https://www.cancer.gov/
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Q1: Is operative treatment more effective in reducing length-of-stay?

Q2: Should everyone receive surgery?

A. Yes. Surgery seems effective on average.

A. No. Surgery may not be as effective for certain patients.
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Fig: Empirical distribution of # of comorbidities b/w treatment and control arms.

What can we do?

If you have a special variable 
called an instrumental variable 
(IV), you can still estimate “certain” 
treatment effect. 
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An instrument must itself  
be unconfounded
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Outcome

Covariates 
(Info. about patients, 

and surgeons)

Treatment 
(Surgery)

Instrumental 
variable

Prognostic factors 
(Unmeasured)
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We use surgeons’ preference as an IV

7

Relevance: 

Patients are more likely to receive treatment surgeons prefer. 

Exclusion restriction: 

Preference may not directly affect the outcomes.

Unconfounded IV: 

Patients for emergency care may not choose their surgeons (i.e., randomized).


For each surgeon, compute # of operations/# of patients on a separate data.
(Brookhart (2007) and Keele et al. (2018)). 
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E[Y(1) − Y(0)]Average treatment effect (ATE):

Local average treatment effect (LATE): E[Y(1) − Y(0) ∣ Complier]
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1. We do not generally know who compliers are.
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10

We can estimate covariate density for each patient type:

, , and 

.
P(V = v ∣ Complier) P(V = v ∣ Always-taker)
P(V = v ∣ Never-taker)

We can study the robustness of our estimates when 
there are defiers.

LATE := E[Y(1) − Y(0) ∣ Complier]
Monotonicity := No Defiers with prob. 1

Remedy for 1

Remedy for 2
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Fig: Estimated conditional probability of # of comorbidities for each patient type. Vertical bars are pointwise 95% CIs.

ℙ(I{# of Comorb. = v} ∣ Patient type)



Nonparametric estimation and 
inference
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=
E[E[Y ∣ Z = 1,W]] − E[E[Y ∣ Z = 0,W]]
E[E[A ∣ Z = 1,W]] − E[E[A ∣ Z = 0,W]]

E[Y(1) − Y(0) ∣ Complier] = ψ0

By Imbens and Angrist (1994)

(Valid IV, no-defiers, Positivity)
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construct estimators 

using machine learning.
̂μn , ̂λn , and ̂πn

̂ψn :=
n−1 ∑n

i=1 ϕ1(Oi; ̂μn , ̂πn )

n−1 ∑n
i=1 ϕ2(Oi; ̂λn , ̂πn )

n1/2 ( ̂ψn − ψ0) d⟶ N (0,σ2(μ0, λ0, π0))
⟹ [ ̂ψn ± 1.96 n−1/2 ̂σ]

An estimator of LATE ψ0 Asymptotic normality
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ψ0(v) = E[Y(1) − Y(0) ∣ Complier, V = v]
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̂ψn :=
n−1 ∑n
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An estimator of LATE

An estimator of Cond. LATE

Inference of  is generally challenging.  
We use bootstrap to construct CIs. 

ψ0(v)



Empirical results
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Surgery is effective on average if you are a complier

18

Fig: The point estimates of LATE and 95% CIs from three estimators. 

We first estimate LATE.

Lower the better (i.e., surgery reduces the 
rate of “adverse” outcomes).


Unadjusted estimator ignores 
confounding.


TSLS is a parametric method based 
on linear regression.

Surgery is effective

Surgery is not effective



We estimate  where  is all covariates.E[Y(1) − Y(0) ∣ Complier, W = w] W

Fig: The distribution of the estimated cond. LATE on all available covariates. 

Surgery may not be effective for most people

19

Surgery is less effectiveSurgery is effective



How does the efficacy vary as a function of covariates?

20

1. We estimate  for  including # of 
comorbidities, an indicator for sepsis, and age. 


2. For the regression model, we use a generalized additive model.


3. We use bootstrap samples to construct 95% confidence sets.

E[Y(1) − Y(0) ∣ Complier, V = v] V
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Fig: Estimated cond. LATE and bootstrap CIs as a function of comorbidities and sepsis.

Surgery is effective

Surgery is not effective
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Fig: Estimated cond. LATE and bootstrap CIs as a function of comorbidities and sepsis.

Depending on septic or 
not, the consequence of 

having many comorbidities 
seems to change.

Surgery is effective

Surgery is not effective
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Fig: Estimated cond. LATE and bootstrap CIs as a function of age and sepsis.

Surgery is effective

Surgery is not effective
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Fig: Estimated cond. LATE and bootstrap CIs as a function of age and sepsis.
The choice of treatment does 

not really matter for

non-septic and young patients  

Surgery is effective

Surgery is not effective
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Fig: Heatmap of cond. LATE as a function of age, comorbidities and sepsis.
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Operative vs non-operative 
may not matter for


healthy and young patients  
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Fig: Heatmap of cond. LATE as a function of age, comorbidities and sepsis.

Operative vs non-operative 
may not matter for


healthy and young patients  

Surgery may not be 
recommended for septic 

patients with many 
comorbidities



Sensitivity analysis

24



What if our data contained defiers?

When there are defiers, LATE can take any values in the following interval: 
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When there are defiers, LATE can take any values in the following interval: 
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E[Y(1) − Y(0) ∣ Complier] ∈ [ψ0 −
δ1δ2

δ3
, ψ0 +

δ1δ2

δ3 ]
δ1 := P(Defier)
δ2 := E[Y(1) − Y(0) ∣ Defier] − E[Y(1) − Y(0) ∣ Complier]
δ3 := P(Complier) − P(Defier)

Angrist, et al (1996)
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Fig: Heatmap of LATE upper bound as a function of two 
sensitivity parameters.

Recall  

and 

LATE ≤ ψ0 +
δ1δ2

δ3̂ψn = − 0.05



What if our data contained defiers?
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Fig: Heatmap of LATE upper bound as a function of two 
sensitivity parameters.

15% of the studied 
population is defiers.


Surgery is 25% risker for 
defiers than compliers.

Recall  

and 

LATE ≤ ψ0 +
δ1δ2

δ3̂ψn = − 0.05
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Morals of the story

28

We can estimate treatment effect under unmeasured confouding using an IV.

Although it is an effect for compliers only, we can investigate their characteristics. 

We can conduct the sensitivity analysis against the no-defiers assumption. 


We should look at conditional LATE. 

The conclusion from LATE can be misleading and may not be applicable to most people. 



Thank you.
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Appendix
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A.1 Computing surgeon’s “preference”

1. For each surgeon, we split his or her patient 
population in half.


2. Using one half of the data, we calculate the 
proportion of times a surgeon operates.


3. Surgeons were removed from our study if they 
did not perform at least 5 operations per year. 


4. The resulting variable is binarized at median. 

31



A.2 Definition of adverse outcomes

1. Prolonged length of stay is an indicator that equals one 
when the hospital and operation-specific length of stay 
is greater than the 75th percentile (5790 cases)


2. Include mortality as an adverse outcomes (332 cases)


3. Together we have 5971 cases of adverse outcomes. 
(i.e., Prolonged LOS or mortality)
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A.3 More description of the data

1. 181 unique hospitals and 397 unique surgeons.


2. IV strength varies between hospitals (approx 0.2~0.9)


3. Avg. preference per hospital varies (approx 0.03~0.90).


4. Covariates include 31 comorbidities based on Elixhauser 
indices, types of medical insurance, types of ethnicity (White, 
Black, Hispanic, and others), gender, the presence of sepsis, 
and disabilities. In addition to these binary variables, we also 
have the total number of comorbidities (count), the age of 
patients (continuous), and the surgeon's years of experience 
(continuous).
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A.4 Cases per hospitals or surgeons

34



A.5 Definition of IVs

1. Relevance: 


2. Exclusion restriction: 


3. Unconfounded IV: 


4. Monotonicity: 

ℙ(A(1) = A(0)) ≠ 1

Y(z, a) = Y(a)

Z ⊥ (A(z), Y(z)) ∣ W

ℙ(A(1) < A(0)) = 0

35



A.6 Identification of LATE.

1. A valid IV (relevance, exclusion restriction, unconfounded IV) 


2. Monotonicity (i.e., no defiers)


3. 0 < P(Z = 1 ∣ W) < 1 with prob. 1

36

E[Y(1) − Y(0) ∣ Complier] =
E[E[Y ∣ Z = 1,W]] − E[E[Y ∣ Z = 0,W]]
E[E[A ∣ Z = 1,W]] − E[E[A ∣ Z = 0,W]]
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A.7 Identification of cond. LATE.

Let  (the subset of covariates).


1. Valid IV* and 2. Monotonicity (i.e., no defiers).

*Relevance needs to be strengthen.


3. .

V ⊆ W

0 < P(Z = 1 ∣ W) < 1 with prob. 1

37

E0[Y(1) − Y(0) ∣ Complier, V = v]

=
E0[E0[Y ∣ Z = 1,W] ∣ V = v] − E0[E0[Y ∣ Z = 0,W] ∣ V = v]
E0[E0[A ∣ Z = 1,W] ∣ V = v] − E0[E0[A ∣ Z = 0,W] ∣ V = v]

Abadie (2003)



A.8 A nonparametric estimator of LATE.
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̂ψn :=
n−1 ∑n

i=1 ϕn,1(Oi; ̂μn , ̂πn )

n−1 ∑n
i=1 ϕn,2(Oi; ̂λn , ̂πn )

ϕn,1(Oi; ̂μn , ̂πn ):= { Zi

̂πn (Wi)
−

1 − Zi

1 − ̂πn (Wi) } {Yi − ̂μn (Zi, Wi)} + ̂μn (1,Wi) − ̂μn (0,Wi)

ϕn,2(Oi; ̂λn , ̂πn ):= { Zi

̂πn (Wi)
−

1 − Zi

1 − ̂πn (Wi) } {Ai − ̂λn (Zi, Wi)} + ̂λn (1,Wi) − ̂λn (0,Wi)

Where



h ( ̂ψ n,1, ̂ψ n,2) − h (ψ0,1, ψ0,2)
=

1
n

n

∑
i=1

∇h (ψ0,1, ψ0,2)T [ϕ*0,1(Oi), ϕ*0,2(Oi)] + op(n−1/2)

A.9 Delta method for influence functions.

39

This is known as Delta method for influence functions.


We heavily use this property for .h(u, v) = u/v

We can combine multiple asymptotic linear estimators as follows:

:= ϕ̃ *0 (Oi)



A.10 Influence function for covariate profile
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ℙ(I(V = v) ∣ A(1) > A(0)) =
E0 [I(V = v){E0[A ∣ Z = 1,W] − E0[A ∣ Z = 0,W]}]

E0[E0[A ∣ Z = 1,W] − E0[A ∣ Z = 0,W]]

ℙ(I(V = v) ∣ A(1) = A(0) = 1) =
E0[I(V = v)E0[A ∣ Z = 0,W]]

E0[E0[A ∣ Z = 0,W]]

ℙ(I(V = v) ∣ A(1) = A(0) = 0) =
E0[I(V = v)E0[A ∣ Z = 1,W]]

E0[E0[A ∣ Z = 1,W]]



A.11 Influence function for LATE.
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ϕ̃*0 (O; μ0, λ0, π0) :=
1

𝔼0[ϕ2(O)] (ϕ1(O) − ψ0ϕ2(O))

ϕ1:= O ↦ { Z
π0(W)

−
1 − Z

1 − π0(W) } {Y − μ0(Z, W)} + μ0(1,W) − μ0(0,W)

ϕ2:= O ↦ { Z
π0(W)

−
1 − Z

1 − π0(W) } {A − λ0(Z, W)} + λ0(1,W) − λ0(0,W)

A simple consequence of Delta method



A.12 Nonparametric estimator for covariate profile
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ϕ2:= O ↦ { Z
π0(W)

−
1 − Z

1 − π0(W) } {A − λ0(Z, W)} + λ0(1,W) − λ0(0,W)

E0 [I(V = v){E0[A ∣ Z = 1,W] − E0[A ∣ Z = 0,W]}]
E0[E0[A ∣ Z = 1,W] − E0[A ∣ Z = 0,W]]

=
E0I(V = v)ϕ2(O)

E0ϕ2(O)



A.13 Nonparametric estimator for covariate profile
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ϕ(0)
2 := O ↦

1 − Z
1 − π0(W) {A − λ0(Z, W)} + λ0(0,W)

E0[I(V = v)E0[A ∣ Z = 0,W]]
E0[E0[A ∣ Z = 0,W]]

=
E0I(V = v)ϕ(0)

2 (O)
E0ϕ(0)

2 (O)



A.14 Nonparametric estimator for covariate profile
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ϕ(1)
2 := O ↦

Z
π0(W) {A − λ0(Z, W)} + λ0(1,W)

E0[I(V = v)E0[A ∣ Z = 1,W]]
E0[E0[A ∣ Z = 1,W]]

=
E0I(V = v)ϕ(1)

2 (O)
E0ϕ(1)

2 (O)



A.15 Profiling with continuous RVs
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Fig: Estimated conditional density of age for each patient type. Vertical bars indicate pointwise 95% CIs.



A.16 An algorithm for LATE
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Step 1: Use sample-splitting to construct machine learning estimators: . 

Step 2: Plug-in to the (uncentered) influence functions:  and . 

Step 3: Return . 

Step 4: 95%-CI is given by  where  is an estimate of the influence function.

̂μn , ̂λn , ̂πn

{ϕn,1(Oi; ̂μn , ̂πn )}n
i=1 {ϕn,2(Oi; ̂λn , ̂πn )}n

i=1

̂ψn :=
n−1 ∑n

i=1 ϕn,1(Oi; ̂μn , ̂πn )

n−1 ∑n
i=1 ϕn,2(Oi; ̂λn , ̂πn )

[ ̂ψn ± 1.96 Var ϕ̃ *n /n] ϕ̃ *n



A.17 An algorithm for cond. LATE
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Step 1: Use sample-splitting and construct machine learning estimators: . 

Step 2: Plug-in to the (uncentered) influence functions:  and . 

Step 3: Regress  and  on  using (nonparametric) regression. 

Step 4: Return  as the estimates of .

̂μn , ̂λn , ̂πn

{ϕn,1(Oi; ̂μn , ̂πn )}n
i=1 {ϕn,2(Oi; ̂λn , ̂πn )}n

i=1

{ϕn,1(Oi; ̂μn , ̂πn )}n
i=1 {ϕn,2(Oi; ̂λn , ̂πn )}n

i=1 V

̂ψn (v)
̂E0 [ϕn,1(O) ∣ V = v]
̂E0 [ϕn,2(O) ∣ V = v]



A.18 Properties of LATE estimator
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n1/2 ( ̂ψn − ψ0) d⟶ N (0,Var ϕ̃*0 (O; μ0, λ0, π0))
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1. Our estimator is root-n consistent.

2. It possesses double-robustness.
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1. Our estimator is root-n consistent.

2. It possesses double-robustness.

 is root-n consistent if ̂ψn

A.18 Properties of LATE estimator

48

n1/2 ( ̂ψn − ψ0) d⟶ N (0,Var ϕ̃*0 (O; μ0, λ0, π0)) ⟹ [ ̂ψn ± 1.96 Var ϕ̃ *n /n]

∥ ̂πn − π0∥2 (∥ ̂λn − λ0∥2 + ∥ ̂μn − μ0∥2) = oP(n−1/2) .



A.19 Positivity violation
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Distribution of est. propensity scores Est. LATE at different truncation values of propensity



A.20 F-test for relevance
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A.20 F-test for relevance
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1. Regress A on Z and W

2. Regress A on constant and W

3. Perform F-test on the nested model 



A.22 Exclusion restriction

51

Y(0,a) ≠ Y(1,a) where Y(z, a) is POs for both IV and trt.

E[Y(1) − Y(0) ∣ Complier] ∈ [ψ0 −
δ1δ2

δ3
, ψ0 +

δ1δ2

δ3 ]



A.22 Exclusion restriction

51

Y(0,a) ≠ Y(1,a) where Y(z, a) is POs for both IV and trt.

E[Y(1) − Y(0) ∣ Complier] ∈ [ψ0 −
δ1δ2

δ3
, ψ0 +

δ1δ2

δ3 ]
δ1 := 1 − P(Complier)
δ2 := E[Y(1,a) − Y(0,a) ∣ Always taker ∪ Never taker]
δ3 := P(Complier)


