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Abstract

This manuscript studies a general approach to construct confidence sets for the
solution of population-level optimization, commonly referred to as M-estimation. Sta-
tistical inference for M-estimation poses significant challenges due to the non-standard
limiting behaviors of the corresponding estimator, which arise in settings with increas-
ing dimension of parameters, non-smooth objectives, or constraints. We propose a
simple and unified method that guarantees validity in both regular and irregular cases.
Moreover, we provide a comprehensive width analysis of the proposed confidence set,
showing that the convergence rate of the diameter is adaptive to the unknown degree of
instance-specific regularity. We apply the proposed method to several high-dimensional
and irregular statistical problems.

Keywords— Honest inference, Adaptive inference, Irregular M-estimation, Non-standard
asymptotics, Extremum estimators.

Contents

1 Introduction 2

2 Construction of the Confidence Set 6

3 Construction of Lower Confidence Bounds 8
3.1 Construction by concentration inequalities . . . . . . . . . . . . . . . . 9
3.2 Construction by the central limit theorem . . . . . . . . . . . . . . . . . 12
3.3 On the validity of the CLT-based method . . . . . . . . . . . . . . . . . 14

4 Statistical Applications 16
4.1 High-dimensional mean estimation . . . . . . . . . . . . . . . . . . . . . 16
4.2 Misspecified linear regression . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Manski’s maximum score estimator . . . . . . . . . . . . . . . . . . . . 19
4.4 Quantile estimation without positive densities . . . . . . . . . . . . . . 21

5 Concluding Remarks 23

1

With Arun Kumar Kuchibhotla 



1. Motivation and Settings



Observe IID real-valued R.V.s  and estimate .X1, …, Xn μ = med(X)

Use the sample median as an estimator .μn = X(⌈n/2⌉)
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2.  where  is not Gaussian (Smirnov, 1952) and  
is the Hölder smoothness of CDF at  (When , it reduces to the first case).
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Use the sample median as an estimator .μn = X(⌈n/2⌉)

How do we construct a confidence interval?

1.  where  is density at median.n1/2(μn − μ) d⟶ N (0,1/(4f2(μ))) f(μ) > 0

2.  where  is not Gaussian (Smirnov, 1952) and  
is the Hölder smoothness of CDF at  (When , it reduces to the first case).
n1/(2β)(μn − μ) d⟶ W(β) W(β) β

μ β = 1

Inference based on asymptotic normality requires  ; otherwise, we need to 
know the precise value of .

f(μ) > 0
β
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Many estimators display similar irregular behaviors where “limiting” distributions are 
non-standard, complicated or unknown (without additional assumptions). 

ex) Median / quantile. 
ex) Shape-restricted estimators and classification (Kim and Pollard, 1990). 
ex) High-dimensional problems.
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Many estimators display similar irregular behaviors where “limiting” distributions are 
non-standard, complicated or unknown (without additional assumptions). 

ex) Median / quantile. 
ex) Shape-restricted estimators and classification (Kim and Pollard, 1990). 
ex) High-dimensional problems.

Statistical inference for these irregular problems are known to be challenging.  
Asymptotic normality does not hold. Bootstrap is usually inconsistent.   
Typically, you have to change the methods between regular and irregular cases.

Q. Can we come up with a single confidence set that remains valid for 
for both regular and irregular settings?
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Observe  from a distribution . Let  be a space of parameters. 

 and . 

ex) Regression, maximum likelihood, cross-validation. 
ex) Quantile estimation, shape-restricted estimation, classification. 
ex) High-dimensional problems where the “dimension”  of  grows with .

X1, …, Xn ∈ 𝒳 P ∈ 𝒫 Θ

θP = argmin
θ∈Θ

𝔼[m(X; θ)] ̂θ n = argmin
θ∈Θ

1
n

n

∑
i=1

m(Xi; θ)

d Θ n
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The goal is to construct a confidence set  for  with the following properties: 

1. Uniform validity over , including both regular and irregular cases, i.e.,  

2. Optimal and adaptive convergence rates of the diameter of .

CIn,α θP

𝒫 inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≥ 1 − α
CIn,α



2. Proposed Procedure
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1. Split data  into two sets  and . Using , construct any estimator . 

2. For each  and , define .  

3. Let  and  be the sample mean and variance of  computed on .  

4. The confidence set is defined as  where  is  
quantile of the standard Normal.

{Xi}2n
i=1 D1 D2 D1

̂θ
θ ∈ Θ Xi ∈ D2 ξi := m(Xi; θ) − m(Xi; ̂θ )

ξ ̂σ 2 ξi D2

CIn,α := {ξ ≤ n−1/2z1−α ̂σ : θ ∈ Θ} z1−α 1 − α

Observe  from a distribution . Let  be a space of parameters. 
The parameter of interest is .

X1, …, X2n ∈ 𝒳 P ∈ 𝒫 Θ
θP := argmin

θ∈Θ
𝔼[m(X; θ)]
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1. Split data  into two sets  and . Using , construct any estimator . 

2. For each  and , define .  

3. Let  and  be the sample mean and variance of  based on .  

4. The confidence set is defined as .

{(Xi, Yi)}2n
i=1 D1 D2 D1

̂θ
θ ∈ Θ (Xi, Yi) ∈ D2 ξi := {Yi − θ(Xi)}2 − {Yi − ̂θ (Xi)}2

ξ ̂σ 2 ξi D2

CIn,α := {ξ ≤ n−1/2z1−α ̂σ : θ ∈ Θ}

Observe  from a distribution . Let  be a space of parameters. 
Define .

(X1, Y1), …, (X2n, Y2n) ∈ ℝd × ℝ P ∈ 𝒫 Θ
θP := argmin

θ∈Θ
𝔼[{Y − θ(X)}2]
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1. Split data  into two sets  and . Using , construct any estimator . 

2. For each  and , define .  

3. Let  and  be the sample mean and variance of  based on .  

4. The confidence set is defined as .

{(Xi, Yi)}2n
i=1 D1 D2 D1

̂θ
θ ∈ Θ (Xi, Yi) ∈ D2 ξi := {Yi − θ(Xi)}2 − {Yi − ̂θ (Xi)}2

ξ ̂σ 2 ξi D2

CIn,α := {ξ + λ(θ) − λ( ̂θ ) ≤ n−1/2z1−α ̂σ : θ ∈ Θ}

Observe  from a distribution . Let  be a space of parameters. 
Define .

(X1, Y1), …, (X2n, Y2n) ∈ ℝd × ℝ P ∈ 𝒫 Θ
θP := argmin

θ∈Θ
𝔼[{Y − θ(X)}2 + λ(θ)]



Observe that  is a minimizer and  for any .θP 𝔼[m(X; θP)] − 𝔼[m(X; ̂θ )] ≤ 0 ̂θ ∈ Θ

Why does this work?
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ξi := m(Xi; θ) − m(Xi; ̂θ )

{ξi} γn,α

This approach is agnostic to the dimension of  and the choice of the estimator . Θ ̂θ

This idea is not new (Vogel, 2008), but we use sample-splitting to estimate .̂θ

Why does this work?

10



3. Theoretical Properties



Recall . Let  and  be the sample mean and variance of . ξi := m(Xi; θ) − m(Xi; ̂θ ) ξ ̂σ 2 ξi
The CI is defined as .CIn,α := {ξ ≤ n−1/2z1−α ̂σ : θ ∈ Θ}

Uniform Validity
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For any  , it holds . n ≥ 1 inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≥ 1 − α − sup
P∈𝒫

Δn,P

Theorem 4

We show conditions under which  as  uniformly over . This holds 
under mild assumptions on , including the cases traditionally considered “irregular”.

Δn,P → 0 n → ∞ 𝒫
P



Let .Diam∥⋅∥(A) := sup{∥a − b∥ : a, b ∈ A}

Convergence Rates
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For all ,  

(1) Curvature condition:   for some . 
(2) Variance condition:  for some .  

Then, we have . 

θ ∈ Θ
𝔼[m(X; θ) − m(X; θP)] ≥ c1∥θ − θP∥1+β β ≥ 0

Var[m(X; θ) − m(X; θP)] ≤ c2∥θ − θP∥2η η < 1 + β

Diam∥⋅∥(CIn,α) = OP(n−1/(2+2β−2η) + r1/(1+β)
n + s1/(1+β)

n )

Theorem 8 (informal) 



 depends on the complexity of  and the moments of the local 
envelope  

rn Θ
sup
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|m(X; θ) − m(X; θP) |
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 depends on the quality of the initial 
estimator .

sn ̂θ



Regular (smooth) problems correspond to , leading to . 

So-called “cube-root” problems correspond to  and , leading to . 

Median estimation corresponds to , leading to .

η = β = 1 OP(n−1/2)
η = 1/2 β = 1 OP(n−1/3)

η = 1 OP(n−1/(2β))
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4. Statistical Applications



Assumption-lean Regression
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Observe  from a distribution : 
 where  and . 

The target parameter is . 

-  exists without making the linearity assumption for . 

- We allow  as  

We define the confidence set as  
where .

(X1, Y1)…, (X2n, Y2n) ∈ ℝd × ℝ P ∈ 𝒫
Yi = θ⊤

P Xi + εi 𝔼[εiXi] = 0 𝔼[ε2
i |Xi] = σ2

i

θP := arg min
θ∈ℝd

𝔼[(Y − θ⊤X)2]

θP 𝔼[Yi |Xi]
d → ∞ n → ∞

CIn,α := {ξ ≤ n−1/2z1−α ̂σ : θ ∈ ℝd}
ξi := {Yi − θ⊤Xi}2 − {Yi − ̂θ ⊤Xi}2



Assumption-lean Regression
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Denote the gram matrix .ΓP := 𝔼[XX⊤]

Assume   
(A1) . 

(A2)  for all . 

(A3) There exists  such that  for all . 

(A4) The CLT holds for the R.V.s  (e.g., the Lindeberg condition). 

(A5) The initial estimator  is uniformly consistent for all . 

Then, . 

0 < λ ≤ λmin(ΓP), λmax(ΓP) ≤ λ < ∞
0 < σ ≤ σi ≤ σ < ∞ 1 ≤ i ≤ n

L ≥ 1 (𝔼[ | t⊤X |4 ])1/4 ≤ L(𝔼[ | t⊤X |2 ])1/2 t ∈ 𝕊d−1

⟨t, ϵiXi⟩
̂θ P ∈ 𝒫

lim inf
n→∞

inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≥ 1 − α

Theorem 11 (informal) 



Assumption-lean Regression
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Assuming (A1)-(A3) and assume  is the ordinary least squares (OLS). 
When , 

 

̂θ

d log2(d) ≤ n

Diam∥⋅∥(CIn,α) = OP ( σ2tr(ΓP)/n)

Theorem 12 (informal) 
Denote the gram matrix .ΓP := 𝔼[XX⊤]



Assumption-lean Regression
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Assuming (A1)-(A3) and assume  is the ordinary least squares (OLS). 
When , 

 

̂θ

d log2(d) ≤ n

Diam∥⋅∥(CIn,α) = OP ( σ2tr(ΓP)/n)
This result is minimax-optimal (Mourtada, 2022).

Theorem 12 (informal) 
Denote the gram matrix .ΓP := 𝔼[XX⊤]



5. Summary



We introduced a general framework to perform statistical inference on the 
solution of optimization problems (M-estimation) based on sample-splitting.

19



We introduced a general framework to perform statistical inference on the 
solution of optimization problems (M-estimation) based on sample-splitting.

Despite irregular nature of the problem, we provide the confidence set that 
remains uniformly valid for both regular and irregular cases. 

19



We introduced a general framework to perform statistical inference on the 
solution of optimization problems (M-estimation) based on sample-splitting.

Despite irregular nature of the problem, we provide the confidence set that 
remains uniformly valid for both regular and irregular cases. 

The validity is agnostic to the dimension of the problem and the choice of the 
initial estimator. 

19



We introduced a general framework to perform statistical inference on the 
solution of optimization problems (M-estimation) based on sample-splitting.

Despite irregular nature of the problem, we provide the confidence set that 
remains uniformly valid for both regular and irregular cases. 

The validity is agnostic to the dimension of the problem and the choice of the 
initial estimator. 

The width of the confidence set converges adaptively to the local geometric 
features of optimization (curvature and variance).
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This talk focused on the CLT-based approach but the manuscript also 
develops an approach based on concentration inequalities. 

20



This talk focused on the CLT-based approach but the manuscript also 
develops an approach based on concentration inequalities. 

More examples in the manuscript (Manski’s estimator / quantile estimation) 
demonstrate the validity and optimality of the proposed method in some 
challenging inference problems. 
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