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Abstract

This manuscript studies a general approach to construct confidence sets for the
solution of population-level optimization, commonly referred to as M-estimation. Sta-
tistical inference for M-estimation poses significant challenges due to the non-standard
limiting behaviors of the corresponding estimator, which arise in settings with increas-
ing dimension of parameters, non-smooth objectives, or constraints. We propose a
simple and unified method that guarantees validity in both regular and irregular cases.
Moreover, we provide a comprehensive width analysis of the proposed confidence set,
showing that the convergence rate of the diameter is adaptive to the unknown degree of
instance-specific regularity. We apply the proposed method to several high-dimensional
and irregular statistical problems.

Keywords— Honest inference, Adaptive inference, Irregular M-estimation, Non-standard
asymptotics, Extremum estimators.
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Given observations  from unknown distribution , we are 
interested in some “summary" of . 

We consider the summary as minimizer of expected loss function: 
.

{Xi}n
i=1 P ∈ 𝒫

P

P ↦ θP := arg min
θ∈Θ

𝔼P[m(X; θ)]
This is called 
M-estimation
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Given observations  from unknown distribution , we are 
interested in some “summary" of . 

We consider the summary as minimizer of expected loss function: 
.

{Xi}n
i=1 P ∈ 𝒫

P

P ↦ θP := arg min
θ∈Θ

𝔼P[m(X; θ)]

Mean / Median Regression fn.MLE

Classification Model selection Discrete choice

The parameter space  can be nonparametric/high-dimensional, 
constrained (shape/sparsity), or discontinuous. 

Θ
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Goal: Construct a confidence set  for  such that  

.

CIn,α α ∈ [0,1]
sup
P∈𝒫

ℙ(θP ∉ CIn,α) ≤ α

“Traditional” approach
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̂θ θP
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CIn,α α ∈ [0,1]
sup
P∈𝒫

ℙ(θP ∉ CIn,α) ≤ α

“Traditional” approach

1. Construct an estimator  of .  

2. Establish convergence in distribution: 

 

3. Invert this expression :

̂θ θP

rn( ̂θ − θP) d⟶ GP (1)

(1)
CIn,α := [ ̂θ − r−1

n ̂q1−α/2, ̂θ + r−1
n ̂qα/2] CIn,α := [ ̂θ ± zα/2n−1/2 ̂σ P]

n1/2( ̂θ − θP) d⟶ N(0,σ2
P)

Example
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The problem is rn( ̂θ − θP) d⟶ GP

Failure of Wald and Resampling Inference

 Suppose  is median and  is sample median:θP
̂θExample

[Scheffé and Tukey, (1945); Smirnov, (1952)]

Under regularity condition, 
 and the limiting 

distribution is Gaussian.
rn = n1/2

Regular

Otherwise,  and the 
limiting distribution is non-

Gaussian, both depend on an 
unknown parameter .

rn = n1/(2β)

β

Irregular



Most commonly used targets  are M-estimands, defined by 
 

Failure of traditional inference is also observed, for instance, when  
the parameter space  is high-dimensional; 
the parameter space  is constrained;  
the minimizer  is near/on the boundary of ; 
the mapping  is non-smooth near , and so on.

θP

θP := arg min
θ∈Θ

𝔼P[m(X; θ)]

Θ
Θ

θP Θ
θ ↦ 𝔼P[m(X; θ)] θP

The problem is rn( ̂θ − θP) d⟶ GP

Failure of Wald and Resampling Inference
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Statistical inference for irregular M-estimation is an ongoing challenge. 
Subsampling/Bootstrap typically fail for these problems.  
We don’t always know the rate of convergence or limiting distribution 
of the standard estimator. 
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Statistical inference for irregular M-estimation is an ongoing challenge. 
Subsampling/Bootstrap typically fail for these problems.  
We don’t always know the rate of convergence or limiting distribution 
of the standard estimator. 

Regardless, we construct a confidence set  thatCIn,α

(1) remains valid without the 
knowledge of the regularity; 

(2) converges adaptively at a rate 
depending on the regularity. 

This is adaptive inference
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Proposed Procedure
T. and Kuchibhotla, A. K. (2025)

We employ  sample-
splitting

8

Given  samples, we construct any estimator  using the first half.  
On the second half, we perform the following: 

2n ̂θ

Recall  and θP := arg min
θ∈Θ

𝕄(θ) 𝕄(θ) = 𝔼P[m(X; θ)]



Proposed Procedure
T. and Kuchibhotla, A. K. (2025)

1.  For each , compute the difference of empirical losses: 

.  

2. Report the confidence set:   

where  is an estimate of the standard deviation of .

θ ∈ Θ

̂𝕄 (θ) − ̂𝕄 ( ̂θ ) = n−1
2n

∑
i=n+1

m(Xi; θ) − m(Xi; ̂θ )

CIn,α := {θ ∈ Θ : ̂𝕄 (θ) − ̂𝕄 ( ̂θ ) ≤ zαn−1/2 ̂σ θ}
n−1/2 ̂σ θ ̂𝕄 (θ) − ̂𝕄 ( ̂θ )

8

Given  samples, we construct any estimator  using the first half.  
On the second half, we perform the following: 

2n ̂θ

Recall  and θP := arg min
θ∈Θ

𝕄(θ) 𝕄(θ) = 𝔼P[m(X; θ)]



Proposed Procedure
T. and Kuchibhotla, A. K. (2025)

1.  For each , compute the difference of empirical losses: 

.  

2. Report the confidence set:   

where  is an estimate of the standard deviation of .

θ ∈ Θ

̂𝕄 (θ) − ̂𝕄 ( ̂θ ) = n−1
2n

∑
i=n+1

m(Xi; θ) − m(Xi; ̂θ )

CIn,α := {θ ∈ Θ : ̂𝕄 (θ) − ̂𝕄 ( ̂θ ) ≤ zαn−1/2 ̂σ θ}
n−1/2 ̂σ θ ̂𝕄 (θ) − ̂𝕄 ( ̂θ )

8

Given  samples, we construct any estimator  using the first half.  
On the second half, we perform the following: 

2n ̂θ

By definition  lies in the set . A key observation 
is that the risk of an irregular estimator may be well-behaving. 

θP {θ ∈ Θ : 𝕄(θ) − 𝕄( ̂θ ) ≤ 0}Intuition

Recall  and θP := arg min
θ∈Θ

𝕄(θ) 𝕄(θ) = 𝔼P[m(X; θ)]



Inverting the risk of an irregular estimator has a long history.

A Brief History
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Inverting the risk of an irregular estimator has a long history.

1981

Stein mentioned the 
idea in passing

A Brief History

9

[Stein, 1981]



Inverting the risk of an irregular estimator has a long history.

1981 1996~1998

A Brief History

 The inversion based on CLT 
appeared in the late 1990s

9

[Beran, 1996; Beran and Dümbgen, 1998]



Robins and van der Vaart 
(2006) combine the CLT and 

sample-splitting

Inverting the risk of an irregular estimator has a long history.

1981 1996~1998

A Brief History

2006

9

[Robins and van der Vaart, 2006]



Inverting the risk of an irregular estimator has a long history.

1981 1996~1998 2018 ~

A Brief History

Many recent works use 
this idea for irregular 

inference

2006

9

[Chakravarti et al. (2019); Kim and Ramdas (2024); Park et al. (2025+); Takatsu and Kuchibhotla (2025+)]



“Universal confidence set” 
(Vogel, 2008) but without 

sample-splitting

Inverting the risk of an irregular estimator has a long history.

1981 1996~1998 2018 ~

A Brief History

2006

Literature in stochastic 
programming uses CLT for 
general loss + constraints

1989~1996 2008

9

[Shapiro (1989); Geyer (1994); Pflug (1991, 1995, 2003); Vogel (2008)]



Inverting the risk of an irregular estimator has a long history.

1981 1996~1998 2018 ~

A Brief History

20061989~1996 2008

9

Our contribution in [T. and Kuchibhotla, A. K. (2025)] lies in analyzing the validity 
and width properties for general M-estimation problems



Properties of the Confidence Set
T. and Kuchibhotla, A. K. (2025)
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Properties of the Confidence Set
T. and Kuchibhotla, A. K. (2025)

We do not need to know the rate of convergence or the 
limiting distribution of the M-estimator for our method. 

Validity holds even when  is not unique. 

By sample-splitting, validity holds regardless of the 
dimension/complexity of  or the choice of .
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Θ ̂θ

 Validity
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Properties of the Confidence Set
T. and Kuchibhotla, A. K. (2025)

 Application High-dimensional MLEs; High-dimensional regression; 
Manski’s maximum score estimator; Quantile; Argmin.  

We do not need to know the rate of convergence or the 
limiting distribution of the M-estimator for our method. 

Validity holds even when  is not unique. 

By sample-splitting, validity holds regardless of the 
dimension/complexity of  or the choice of .

θP

Θ ̂θ

 Validity

We assume  is unique for the analysis. 

The diameter converges at an adaptive rate, depending 
on the geometry of the problem. 

The convergence rate also depends on the dimension/
complexity of  and the choice of .

θP

Θ ̂θ

Size of the CI
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Recall . Define  and .𝕄(θ) = 𝔼P[m(X; θ)] ξP,i := m(Xi; θP) − m(Xi; ̂θ ) σ2
P := Var[ξP | ̂θ ]

For any ,  

. 

n ≥ 1

ℙP(θP ∉ CIn,α | ̂θ ) ≤ min { σ2
P

n |𝕄(θP) − 𝕄( ̂θ ) |2
, α + 𝔼P [ |ξP − 𝔼P[ξP] |3

n1/2σ3
P

̂θ]}
We verify that the RHS converges to zero uniformly over large collection of 
distributions  in regular problems (QMD) and also several irregular problems, 
including Manski model, quantile estimation and constrained problems.  

Crucially, the RHS does not depend on the dimension of 

𝒫

Θ

Validity Condition
T. and Kuchibhotla, A. K. (2025)

11

Theorem 



Convergence Rates
T. and Kuchibhotla, A. K. (2025)

For all ,  

 for some . 

 for some . 

θ ∈ Θ
𝔼P[m(X; θ) − m(X; θP)] ≳ ∥θ − θP∥1+β β ≥ 0

VarP[m(X; θ) − m(X; θP)] ≲ ∥θ − θP∥2η η < 1 + β

Curvature

Variance

12

Illustration of curvature
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The diameter of the confidence set satisfies 
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n + s1/(1+β)

n )

When , we get a parametric rate  
When  and , we get a cube-root rate

β = η = 1
β = 1 η = 1/2

Theorem (Informal)
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Example 1 (Mean Inference)

13

D-dimensional mean inference from N = 500.

Consider high-dimensional mean inference where .θP := arg min
θ∈Θ

𝔼P∥X − θ∥2
2



Example 2 (Manski's Discrete Choice Model)

14

Consider an IID observation  
generated from Manski's model: 

 where  

(Y1, X1), …, (Y2n, X2n) ∈ {−1,1} × ℝd

Yi := sgn(θ⊤
P Xi + εi) Med(εi |Xi) = 0

It has been shown that .θP = arg max
θ∈𝕊d−1

𝔼P[Y sgn(θ⊤
P X)]

* .sgn(t) = 21{t ≥ 0} − 1

[Manski, (1985)]



Example 2 (Manski's Discrete Choice Model)

15

Recall .θP = arg max
θ∈𝕊d−1

𝔼P[Y sgn(θ⊤
P X)]

Under the assumptions A1 and A2: 

. Diam∥⋅∥(CIn,α) = OP (( d log(d/n)
n )

1/β

+ s1/(1+2β)
n )

Theorem (Informal)

This matches the known 
minimax estimation rate.

Set . Assume  for all . 

Assume  for all . 

η(x) = ℙX(Y = 1 |X = x) ℙX( |η(X) − 1/2 | > t) ≲ t1/β t ≥ 0

∥θ − θP∥2 ≲ ℙX(sgn(θ⊤X) ≠ sgn(θ⊤
P X)) θ ∈ 𝕊d−1

A1

A2

[Mukherjee et al. (2019, 2021)]



Risk inversion and sample-splitting provide a general confidence set for (irregular) M-
estimation. 

The confidence set is valid under very weak assumptions. For instance, we do not need to 
know the rate of convergence or the limiting distribution of the M-estimator, and the validity 
of this method is dimension-free.  

The width of the set converges at an adaptive rate, depending on the (unknown) geometry 
of the problems, such as the curvature. 

Summary

16



Thank You
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This manuscript studies a general approach to construct confidence sets for the
solution of population-level optimization, commonly referred to as M-estimation. Sta-
tistical inference for M-estimation poses significant challenges due to the non-standard
limiting behaviors of the corresponding estimator, which arise in settings with increas-
ing dimension of parameters, non-smooth objectives, or constraints. We propose a
simple and unified method that guarantees validity in both regular and irregular cases.
Moreover, we provide a comprehensive width analysis of the proposed confidence set,
showing that the convergence rate of the diameter is adaptive to the unknown degree of
instance-specific regularity. We apply the proposed method to several high-dimensional
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Abstract

In statistical inference, confidence set procedures are typically evaluated based on
their validity and width properties. Even when procedures achieve rate-optimal widths,
confidence sets can still be excessively wide in practice due to elusive constants, leading
to extreme conservativeness, where the empirical coverage probability of nominal 1→ω
level confidence sets approaches one. This manuscript studies this gap between validity
and conservativeness, using universal inference (Wasserman et al., 2020) with a regular
parametric model under model misspecification as a running example. We identify the
source of asymptotic conservativeness and propose a general remedy based on studen-
tization and bias correction. The resulting method attains exact asymptotic coverage
at the nominal 1→ω level, even under model misspecification, provided that the prod-
uct of the estimation errors of two unknowns is negligible, exhibiting an intriguing
resemblance to double robustness in semiparametric theory.
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Key Idea: Risk Inversion

Observe that  is a minimizer and  for any .θP 𝔼P[m(X; θP)] − 𝔼P[m(X; ̂θ ) | ̂θ ] ≤ 0 ̂θ ∈ Θ
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Key Idea: Risk Inversion

Observe that  is a minimizer and  for any .θP 𝔼P[m(X; θP)] − 𝔼P[m(X; ̂θ ) | ̂θ ] ≤ 0 ̂θ ∈ Θ
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From earlier, we define , and we can use the central limit theorem (CLT) 
for the t-statistics of to obtain .

ξi := m(Xi; θ) − m(Xi; ̂θ )
{ξi} γn,α
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A non-actionable but valid confidence set is .{θ ∈ Θ : 𝔼P[m(X; θ) − m(X; ̂θ ) | ̂θ ] ≤ 0}
The proposed confidence set is  where 

 is an appropriate cutoff to guarantee validity. 
{θ ∈ Θ : n−1 ∑ [m(Xi; θ) − m(Xi; ̂θ )] ≤ γn,α}

γn,α → 0

From earlier, we define , and we can use the central limit theorem (CLT) 
for the t-statistics of to obtain .

ξi := m(Xi; θ) − m(Xi; ̂θ )
{ξi} γn,α

Similar ideas exist in the literature [Beran and Dümbgen, 1996; Robins and van der Vaart, 2006; Vogel, 2008]. 
Our contribution is in new theoretical analysis and statistical applications. 
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Define . Define sample mean and variance as  and . 

Denote the (conditional) Kolmogorov-Smirnov distance by  

  

where  is the CDF of the standard Normal.

ξP,i := m(Xi; θP) − m(Xi; ̂θ ) ξP ̂σ 2
P

Δn,P := sup
t∈ℝ

ℙP ( n1/2(ξP − 𝔼[ξP])
̂σ P

≤ t | ̂θ) − Φ(t)

Φ(t)

Validity Condition
T. and Kuchibhotla, A. K. (2025)
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Define . Define sample mean and variance as  and . 

Denote the (conditional) Kolmogorov-Smirnov distance by  

  

where  is the CDF of the standard Normal.

ξP,i := m(Xi; θP) − m(Xi; ̂θ ) ξP ̂σ 2
P

Δn,P := sup
t∈ℝ

ℙP ( n1/2(ξP − 𝔼[ξP])
̂σ P

≤ t | ̂θ) − Φ(t)

Φ(t)

Validity Condition

For any , it holds . n ≥ 1 inf
P∈𝒫

ℙP(θP ∈ CIn,α) ≥ 1 − α − sup
P∈𝒫

𝔼P[Δn,P]

Theorem 

T. and Kuchibhotla, A. K. (2025)
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Define  and .ξP,i := m(Xi; θP) − m(Xi; ̂θ ) σ2
P := Var[ξP | ̂θ ]

For any ,  

. 

n ≥ 1

Δn,P ≤ min {1,𝔼P [ |ξP − 𝔼P[ξP] |2

σ2
P

min {1,
|ξP − 𝔼P[ξP] |

n1/2σP } ̂θ]}
Berry-Esseen bound for t-statistics (Katz, 1963; Bentkus et al., 1996)

Validity Condition
T. and Kuchibhotla, A. K. (2025)
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Define  and .ξP,i := m(Xi; θP) − m(Xi; ̂θ ) σ2
P := Var[ξP | ̂θ ]

For any ,  

. 

n ≥ 1

Δn,P ≤ min {1,𝔼P [ |ξP − 𝔼P[ξP] |2

σ2
P

min {1,
|ξP − 𝔼P[ξP] |

n1/2σP } ̂θ]}
Berry-Esseen bound for t-statistics (Katz, 1963; Bentkus et al., 1996)

We provide conditions on  under which  as  uniformly over . 

This holds under mild assumptions on , including the cases traditionally considered “irregular”. 

Crucially, this expression does not depend on the dimension of  as .

{ξP,i} Δn,P = oP(1) n → ∞ 𝒫

P

Θ ξP,i ∈ ℝ

Validity Condition
T. and Kuchibhotla, A. K. (2025)
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Conservativeness
T. (2025)

We have built a confidence set  such thatCIn,α

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 
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Conservativeness
T. (2025)

We have built a confidence set  such thatCIn,α

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 

Even when (1) and (2) hold, the 
confidence set can be overly large, 
in other words, too conservative.

Question:  

Is it  

or  ?

inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≈ 1 − α

inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≈ 1

23



d=2 d=20 d=100

−5 0 5 −5 0 5 −5 0 5
0.0
0.1
0.2
0.3
0.4
0.5

Distribution of  
for high-dimensional linear 

regression ( )

n1/2ξ̄P / ̂σ P

n = 500

Conservativeness
T. (2025)

We have built a confidence set  such thatCIn,α

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 
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The undressed bias  is the driver of the 
conservativeness. 
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The undressed bias  is the driver of the 
conservativeness. 

BP

With additional assumptions, we may be able to 
construct the estimator . B̂

The bias-corrected confidence set is:
. CIBC

n,α := {θ ∈ Θ : ξ+B̂ ≤ n−1/2zα ̂σ}
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 for 

high-dimensional linear 
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∥ ̂θ 1 − θP∥ × | B̂ − BP | = oP(n−1/2)

lim sup
n→∞

|ℙP(θP ∈ CIBC
n,α) − (1 − α) | = 0

Informal 

Distribution of 
 for 

high-dimensional linear 
regression ( )

n1/2(ξ̄P + B̂)/ ̂σ P

n = 500

The property similar to 
double robustness 

emerges.
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