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Given observations  from a unknown distribution , 
we are interested in some “summary" of . 

We consider the summary as a minimizer of expected loss fn: 
.

{Xi}n
i=1 P ∈ 𝒫

P

P ↦ θP := argmin
θ∈Θ

𝔼P[m(X; θ)]
This is called M-estimation

Convex optimization and convex constraints 
(www.mathworks.com)

http://www.mathworks.com
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Given observations  from a unknown distribution , 
we are interested in some “summary" of . 

We consider the summary as a minimizer of expected loss fn: 
.

{Xi}n
i=1 P ∈ 𝒫

P

P ↦ θP := argmin
θ∈Θ

𝔼P[m(X; θ)]

Mean / Median Regression fn.MLE

Classification Model selection Discrete choice

The parameter space  can be high-dimensional, 
constrained (shape/sparsity), or discrete. 

Θ
Convex optimization and convex constraints 

(www.mathworks.com)

http://www.mathworks.com
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Goal: Construct a confidence set  for  such that  

.

CIn,α α ∈ [0,1]
inf

P∈𝒫
ℙ(θP ∈ CIn,α) ≥ 1 − α

A “traditional” approach



1. Construct an estimator  of . ̂θ θP

2. Establish convergence in distribution: 

rn( ̂θ − θP) d⟶ GP (1)

3. Invert the expression : (1)

CIn,α := [ ̂θ − r−1
n ̂q1−α/2, ̂θ − r−1

n ̂qα/2] .
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Goal: Construct a confidence set  for  such that  

.

CIn,α α ∈ [0,1]
inf

P∈𝒫
ℙ(θP ∈ CIn,α) ≥ 1 − α

A “traditional” approach

n1/2( ̂θ − θP) d⟶ N(0,σ2
P)

CIn,α := [ ̂θ ± zα/2n−1/2 ̂σ P]

Example
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The problem is .rn( ̂θ − θP) d⟶ GP

Failure of the Wald Interval

[Scheffé and Tukey, 1945; Smirnov, 1952]
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 and the limiting 

distribution is Gaussian.
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The problem is .rn( ̂θ − θP) d⟶ GP

Failure of the Wald Interval

Under regularity condition, 
 and the limiting 

distribution is Gaussian.
rn = n1/2

Otherwise,  and the 
limiting distribution is non-

Gaussian, both depend on an 
unknown parameter .

rn = n1/(2β)

β

 Suppose  is median and  is sample median:θP
̂θExample

[Scheffé and Tukey, 1945; Smirnov, 1952]
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For many M-estimation defined by  
, 

we observe similar irregular behaviors, for instance, when 
the parameter space  is high-dimensional; 
the parameter space  is constrained; 
the minimizer  is near/on the boundary of ; 
the mapping  is non-smooth near , and so on…

θP := argmin
θ∈Θ

𝔼P[m(X; θ)]

Θ
Θ

θP Θ
θ ↦ 𝔼P[m(X; θ)] θP

Failure of the Wald Interval

The problem is .rn( ̂θ − θP) d⟶ GP



Statistical inference for irregular M-estimation is an ongoing challenge.  
Subsampling/Bootstrap typically fail for these problems. 
We don’t generally know whether/how the problem is regular or not.

6



Statistical inference for irregular M-estimation is an ongoing challenge.  
Subsampling/Bootstrap typically fail for these problems. 
We don’t generally know whether/how the problem is regular or not.

6

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 

Regardless, we show there is a confidence set  such thatCIn,α

This is adaptive inference



Given  samples, we construct any estimator  using the first half.  
On the second half, we perform the following: 

2n ̂θ

Proposed Procedure
T. and Kuchibhotla, A. K. (2025)

We employ  sample-
splitting

7



For each : 

1. Compute the difference of losses: .  

2. Include  in the confidence set if  

  where  and  are sample mean and variance of .  

θ ∈ Θ
ξi ≡ ξi,θ, ̂θ := m(Xi; θ) − m(Xi; ̂θ )

θ

n1/2ξ
̂σ

≤ zα ξ̄ ̂σ 2 {ξi}n
i=1

Given  samples, we construct any estimator  using the first half.  
On the second half, we perform the following: 

2n ̂θ

Proposed Procedure
T. and Kuchibhotla, A. K. (2025)

This is called non-
central t-statistics

7



For each : 

1. Compute the difference of losses: .  

2. Include  in the confidence set if  

  where  and  are sample mean and variance of .  

θ ∈ Θ
ξi ≡ ξi,θ, ̂θ := m(Xi; θ) − m(Xi; ̂θ )

θ

n1/2ξ
̂σ

≤ zα ξ̄ ̂σ 2 {ξi}n
i=1

Given  samples, we construct any estimator  using the first half.  
On the second half, we perform the following: 

2n ̂θ

Proposed Procedure
T. and Kuchibhotla, A. K. (2025)

The final confidence set is .CIn,α := {θ ∈ Θ : n1/2 ̂σ −1ξ ≤ zα}
7



Observe that  is a minimizer and  for any .θP 𝔼P[m(X; θP)] − 𝔼P[m(X; ̂θ ) | ̂θ ] ≤ 0 ̂θ ∈ Θ

Why does this work?
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Observe that  is a minimizer and  for any .θP 𝔼P[m(X; θP)] − 𝔼P[m(X; ̂θ ) | ̂θ ] ≤ 0 ̂θ ∈ Θ

A non-actionable but valid confidence set is .{θ ∈ Θ : 𝔼P[m(X; θ) − m(X; ̂θ ) | ̂θ ] ≤ 0}
The proposed confidence set is  where 

 is an appropriate cutoff to guarantee validity. 
{θ ∈ Θ : n−1 ∑ [m(Xi; θ) − m(Xi; ̂θ )] ≤ γn,α}

γn,α → 0

From earlier, we define , and we can use the central limit theorem (CLT) 
for the t-statistics of to obtain .

ξi := m(Xi; θ) − m(Xi; ̂θ )
{ξi} γn,α

Why does this work?

8
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A Brief History
Inverting the risk of an irregular estimator is not a new idea.
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1981

Stein mentioned the idea in 
passing.

A Brief History
Inverting the risk of an irregular estimator is not a new idea.

[Stein, 1981]
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1981 1996~1998

A Brief History

 The inversion based on CLT 
appeared in nonparametrics in 

the late 1990s.

Inverting the risk of an irregular estimator is not a new idea.

[Beran, 1996; Beran and Dümbgen, 1998]
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1981 1996~1998

A Brief History

Robins and van der Vaart 
combine the CLT and 

sample-splitting.

2006

Inverting the risk of an irregular estimator is not a new idea.

[Robins and van der Vaart, 2006]
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1981 1996~1998 2019 ~

A Brief History

2006

Many works from CMU use this 
idea for irregular inference.

Inverting the risk of an irregular estimator is not a new idea.

 [Chakravarti et al. (2019); Kim and Ramdas (2024); Park et al. (2025+); Takatsu and Kuchibhotla (2025+)]



9

1981 1996~1998 2019 ~

A Brief History

2006

Literature in stochastic 
programming uses CLT for 
general loss + constraints.

1989~1996 2008

“Universal confidence set” 
(Vogel, 2008) but without 

sample-splitting.

Inverting the risk of an irregular estimator is not a new idea.

[Shapiro (1989); Geyer (1994); Pflug (1991, 1995, 2003); Vogel (2008)]
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1981 1996~1998 2019 ~

A Brief History

2006

Literature in stochastic 
programming uses CLT for 
general loss + constraints.

1989~1996 2008

“Universal confidence set” 
(Vogel, 2008) but without 

sample-splitting.

Inverting the risk of an irregular estimator is not a new idea.
Universal inference 

came out in 2020

[Wasserman et al. (2020)]
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 Validity Size of the CI

Properties of the Confidence Set
T. and Kuchibhotla, A. K. (2025)

Reminder:  .CIn,α := {θ ∈ Θ : n1/2 ̂σ −1ξ ≤ zα}
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 Validity Size of the CI

Properties of the Confidence Set
T. and Kuchibhotla, A. K. (2025)

Reminder:  .CIn,α := {θ ∈ Θ : n1/2 ̂σ −1ξ ≤ zα}

Validity holds when  is not unique.  

By sample-splitting, validity holds regardless of the 
dimension/complexity of  or the choice of . 

Relatively mild regularity is required for the CLT.

θP

Θ ̂θ
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The CI shrinks to a singleton only when  is unique. 

The diameter shrinks at an adaptive rate, depending 
on the geometry of the problem. 

The convergence rate also depends on the 
dimension/complexity of  and the choice of .

θP

Θ ̂θ
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 Validity Size of the CI

Properties of the Confidence Set
T. and Kuchibhotla, A. K. (2025)

Reminder:  .CIn,α := {θ ∈ Θ : n1/2 ̂σ −1ξ ≤ zα}

Validity holds when  is not unique.  

By sample-splitting, validity holds regardless of the 
dimension/complexity of  or the choice of . 

Relatively mild regularity is required for the CLT.

θP

Θ ̂θ

The CI shrinks to a singleton only when  is unique. 

The diameter shrinks at an adaptive rate, depending 
on the geometry of the problem. 

The convergence rate also depends on the 
dimension/complexity of  and the choice of .

θP

Θ ̂θ

High-dimensional problems; Manski’s maximum 
score estimator; Quantile; Argmin.Application



Convergence Rates
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T. and Kuchibhotla, A. K. (2025)

For all ,  

  for some . 

  for some .

θ ∈ Θ

𝔼P[m(X; θ) − m(X; θP)] ≳ ∥θ − θP∥1+β β ≥ 0

VarP[m(X; θ) − m(X; θP)] ≲ ∥θ − θP∥2η η < 1 + β

Curvature

Variance

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
|θ − θP|

beta

0.00

0.25

0.50

0.75

1.00

Illustration of curvature



The diameter of the confidence set satisfies 

. Diam∥⋅∥(CIn,α) = OP(n−1/(2+2β−2η) + r1/(1+β)
n + s1/(1+β)

n )

* .Diam∥⋅∥(A) := sup{∥a − b∥ : a, b ∈ A}

Convergence Rates

Theorem 8 (informal) 
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The confidence set shrinks 
adaptively to unknown  and .β η
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For all ,  

  for some . 

  for some .

θ ∈ Θ

𝔼P[m(X; θ) − m(X; θP)] ≳ ∥θ − θP∥1+β β ≥ 0

VarP[m(X; θ) − m(X; θP)] ≲ ∥θ − θP∥2η η < 1 + β

Curvature

Variance

 depends on the complexity of , 
the moments of the local envelope  

.

rn Θ

sup
∥θ−θP∥<δ

|m(X; θ) − m(X; θP) |



The diameter of the confidence set satisfies 

. Diam∥⋅∥(CIn,α) = OP(n−1/(2+2β−2η) + r1/(1+β)
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T. and Kuchibhotla, A. K. (2025)

For all ,  

  for some . 

  for some .

θ ∈ Θ

𝔼P[m(X; θ) − m(X; θP)] ≳ ∥θ − θP∥1+β β ≥ 0

VarP[m(X; θ) − m(X; θP)] ≲ ∥θ − θP∥2η η < 1 + β

Curvature

Variance

 depends on the quality 
of the initial estimator
sn
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Conservativeness
T. (2025)

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 

We have built a confidence set  such thatCIn,α
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Even when (1) and (2) hold, the 
confidence set can be overly large, 
in other words, too conservative. 

Conservativeness
T. (2025)

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 

Question:  
Is it   

or ? 

inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≈ 1 − α

inf
P∈𝒫

ℙ(θP ∈ CIn,α) ≈ 1

We have built a confidence set  such thatCIn,α
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d=2 d=20 d=100

−5 0 5 −5 0 5 −5 0 5
0.0
0.1
0.2
0.3
0.4
0.5

Distribution of  
for high-dimensional linear 

regression .

n1/2ξ̄P / ̂σ P

(n = 500)

Conservativeness
T. (2025)

(1) remains valid without the 
knowledge of the regularity; 

(2) shrinks adaptively at a rate 
depending on the regularity. 

We have built a confidence set  such thatCIn,α
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The unaddressed bias  is the driver of 
conservativeness. 

BP d=100
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The unaddressed bias  is the driver of 
conservativeness. 

BP

With additional assumptions, we may be able to 
construct an estimator . B̂
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The unaddressed bias  is the driver of 
conservativeness. 

BP

With additional assumptions, we may be able to 
construct an estimator . B̂

The bias-corrected confidence set is:
. CIBC

n,α := {θ ∈ Θ : ξ+B̂ ≤ n−1/2zα ̂σ}

d=100

−5 0 5
0.0

0.1

0.2

0.3

0.4

0.5



d=2 d=20 d=100

−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0
0.0
0.1
0.2
0.3
0.4
0.5

Assuming  , and additional conditions, 

. 

∥ ̂θ 1 − θP∥ × | B̂ − BP | = oP(n−1/2)

lim sup
n→∞

|ℙP(θP ∈ CIBC
n,α) − (1 − α) | = 0

Theorem (Informal) 

Distribution of 
 for 

high-dimensional linear 
regression .

n1/2(ξ̄P + B̂)/ ̂σ P

(n = 500)
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0.5

Assuming  , and additional conditions, 

. 

∥ ̂θ 1 − θP∥ × | B̂ − BP | = oP(n−1/2)

lim sup
n→∞

|ℙP(θP ∈ CIBC
n,α) − (1 − α) | = 0

Theorem (Informal) 

Distribution of 
 for 

high-dimensional linear 
regression .

n1/2(ξ̄P + B̂)/ ̂σ P

(n = 500)

A property similar to 
double robustness 

emerges.

15



Combining the CLT for t-statistics and sample-splitting provides a general confidence set 
for M-estimation. 

The confidence set is valid under very weak assumptions.  

The diameter of the set shrinks at an adaptive rate, depending on the (unknown) geometry 
of the problems, such as the curvature.  

Avoiding conservativeness requires additional efforts, such as bias-correction. For some 
problems, the requirement looks similar to double robustness from semiparametric theory. 

Summary

16



Can we use this framework for the profile likelihood: 

 

where   and  is an inner product space?

P ↦ θP := argmin
θ∈Θ

min
η∈ℋ

𝔼P[m(X; θ, η)]

Θ ∈ ℝd ℋ

Open Problem

17

Proportional hazard model Partial linear regression

Single index model Casual functional
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Thank You
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Uniform Validity

19

T. and Kuchibhotla, A. K. (2025)

Q. What is required for the validity of ?CIn,α := {θ ∈ Θ : ξ ≤ n−1/2zα ̂σ}



Define . Define sample mean and variance as  and . 

Denote the Kolmogorov-Smirnov distance by  

  

where  is the CDF of the standard Normal.

ξP,i := m(Xi; θP) − m(Xi; ̂θ ) ξP ̂σ 2
P

Δn,P := sup
t∈ℝ

ℙP ( n1/2(ξP − 𝔼[ξP])
̂σ P

≤ t | ̂θ) − Φ(t)

Φ(t)

Uniform Validity
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This measures 
distance between the 

the t-statistics and 
standard Normal

T. and Kuchibhotla, A. K. (2025)

Q. What is required for the validity of ?CIn,α := {θ ∈ Θ : ξ ≤ n−1/2zα ̂σ}



Define . Define sample mean and variance as  and . 

Denote the Kolmogorov-Smirnov distance by  

  

where  is the CDF of the standard Normal.

ξP,i := m(Xi; θP) − m(Xi; ̂θ ) ξP ̂σ 2
P

Δn,P := sup
t∈ℝ

ℙP ( n1/2(ξP − 𝔼[ξP])
̂σ P

≤ t | ̂θ) − Φ(t)

Φ(t)

Uniform Validity

For any  , it holds . n ≥ 1 inf
P∈𝒫

ℙP(θP ∈ CIn,α) ≥ 1 − α − sup
P∈𝒫

𝔼P[Δn,P]

Theorem 

19

T. and Kuchibhotla, A. K. (2025)

Q. What is required for the validity of ?CIn,α := {θ ∈ Θ : ξ ≤ n−1/2zα ̂σ}


